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Turbulence in plane channel flows 
By M. M. M. EL TELBANY AND A. J. REYNOLDS 

Department of Mechanical Engineering, Brunel University, 
Uxbridge, Middlesex, England 

(Received 10 June 1980) 

This paper complements an earlier study of the mean velocities in turbulent flows in 
a flat channel, one of whose walls can move relative to the other, so that the role of 
the stress gradient within the wall layers can be varied widely and in a controlled 
manner. 

Measurements of longitudinal, normal and lateral velocity fluctuation intensities 
(u’, w’, w’) and of shear stresses have been made in essentially fully developed flows 
established by various combinations of pressure gradient and wall velocity. The 
channel aspect ratio (breadth/height) has been varied between 12 and 28 and the 
development ratio (development length/height) between 20 and 45. The introduction 
of a turbulence-generating grid at  the entrance to the duct increases the effective 
development length. 

The study has considered twenty-six flows that are two-dimensional in the mean, 
which have been established by blowing and relative motion either in the same 
direction or directly opposed. Empirical descriptions, based on similarity laws 
incorporating either the wall stress or the local stress, are developed for the turbulence 
near the walls and in the core. The profiles of u’, w’ and w’ coalesce, to a reasonable 
approximation, when normalized with appropriate length and velocity scales. Exten- 
sive ‘plateau’ regions are identified, in which the scaled intensities are sensibly 
constant. 

A number of quantities characteristic of the structure of the turbulence are con- 
sidered, in order to elucidate the effect of the stress gradient on the wall layer, and 
stages in the erosion of the constant-stress layer are identified. 

1. Introduction 
The measurements described in this paper were undertaken in conjunction with a 

study of mean-velocity distributions in plane turbulent channel flows (El Telbany & 
Reynolds 1980). The objectives of this work are, firstly, the determination of the effect 
of the stress gradient on the turbulence of fully developed flows between parallel 
walls and, secondly, the study of the breakdown of the ‘ constant-stress ’ layer com- 
monly found in turbulent flow adjacent to a wall. 

The flows studied are those in a flat channel (aspect ratio 12 to 28 in these tests) 
through which air is blown, and one of whose sides consists of a flat belt which can be 
moved either with the air blown through the channel or in the opposite direction. 
The experimental situation is shown schematically in figure 1. It is supposed that the 
motion near the midplane and exit from this channel, that is, in the vicinity of the 
access ports shown, approximates to fully developed, unidirectional motion. 
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FIQTJRE 1. Schematic view of test channel showing the belt which provides the moving wall. 

An understanding of the effect of the shear-stress gradient on turbulent wall layers 
requires at  the very least a knowledge of the variations of the component intensities 
throughout such flows. Earlier workers have studied the turbulence structure of two 
particular flows of the class considered here: pure pressure or plane Poiseuille flow 
(Laufer 1951; Comte-Bellot 1965; Hussain & Reynolds 1976) and pure shearing or 
plane Couette flow (Robertson & Johnson 1970). We know of no investigation for 
more varied combinations of blowing velocity and belt speed, although Hanjali6 
(1970) examined an asymmetric pressure flow in which differing wall stresses were 
achieved by roughening one wall.? Mention may also be made of related work on the 
relaminarization of developing boundary layers by Launder & Stinchcombe (1967), 
Pate1 & Head (1968), Badri Narayanan & Ramjee (1969) and Bradshaw (1969). 

The present measurements are of general application in providing insight into the 
role of the shear-stress gradient in a broad class of turbulent wall layers. We consider 
layers where the shear stress decreases away from the wall, as well as those where the 
shear stress exceeds that at the wall. However, all of the flows we consider are charac- 
terized by the absence of significant deviation of the upstream ‘history’ of the flow 
from the local conditions. 

2. -~ Details of experiments 
2.1. Apparatus 

The parallel section of the channel shown in figure 1 is 2440mm long. The main 
measurements were made in the central plane of the channel at a station xm = 1980 mm 
from the blowing end. The belt forming the moving floor is 1200 mm wide, some 20 mm 
less than the channel breadth measured between the separating bars which form the 
vertical sides. To eliminate possible flapping, the belt is supported below by an 
aluminium-surfaced plate. Tensioning and central running on the slightly crowned 
rollers are achieved by screw adjustment of the bearings supporting one of the rollers. 

t See also HanjaliliO & Launder (1972). Flows in which the planes of maximum velocity and 
zero shear stress do not coincide have been considered also by Taillard & Mathieu (1967); 
Spettel, Methieu & Brison (1972) and Alcaraz, Charney & Mathieu (1975). 



I I I 1 I 4 
0 '  " 1 .o 

(a ) O @  
B - 

0 
R (b )  

0.9 - g @--- 

- 
0 

U - 8 
0.8 - 

3.0 

2-0 

Y l h  
FIGURE 2. Mean-velocity and longitudinal-intensity profiles at three different streamwise 
locations for pure pressure flow. All the three stations are on the central plane: A, station 1, 
2/2h = 30.0 (z = 1080 mm); 0, station 2, 2/2h = 25.4 (z = 1675 mm); 0, station 3, 
2/2h = 20.8 (z = 1370mm) (z measured from the blowing end). (a) Mean-velocity profiles. 
( b )  Longitudinal-intensity profiles. 
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The plate forming the top of the channel is stiffened to maintain uniformity of 
channel depth and is clamped to the separating bars, which can be changed to alter 
the depth. The depths used in our experiments range from 2h = 44 mm to 101 mm, 
giving aspect ratios b/2h = 28 to 12, and scaled development distances xm/2h = 45 
to 20. 

The flow into the test channel is supplied by a specially constructed open-circuit 
wind tunnel, consisting of centrifugal fan, diffuser, filters and contraction. To expedite 
the development of the flow, turbulent activity is introduced before the air enters the 
parallel-sided duct, by a coarse mesh of expanded metal located some 150mm 
upstream of the parallel section. The mean-velocity profiles of figure 2(a), and the 
longitudinal intensity profiles of figure 2 ( b )  (for measuring stations x = 1370 mm, 
1675 mm and 1980 mm and for pure pressure flow) demonstrate that the turbulent 
motion is substantially fully developed at  the standard measuring station, 
x, = 1980 mm. Similar measurements made in the absence of the turbulence- 
inducing mesh displayed significant changes from one station to the next. Moreover, 
comparisons of longitudinal intensities in Couette flow, measured at zm = 1980 mm 
with and without the mesh in position, revealed the increase in the intensity to be 
typically A(u'/U,) N 0.15 yo or Auf/u' 21 2 yo when the mesh was introduced. 

The longitudinal velocity fluctuation was measured using a DISA normal hot-wire 
probe (type 5 5 P l l )  in conjunction with a DISA 65M system constant-temperature 
anemometer, a 55M25 linearizer, a 55D35 r.m.8. voltmeter and a Datron 1045 digital 
voltmeter. Vertical and lateral velocity fluctuations and the turbulent shear stress 
were measured with a DISA X-wire probe (type 55P61) in conjunction with two such 
channels, the r.m.s. voltmeter and the digital voltmeter. 

The position of the hot-wire probes within the channel could be controlled within 
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0.01 mm by a micrometer traversing mechanism. The belt speed was determined by 
a counter activated by magnetic strips on the belt. 

2.2. Interpretation of hot-wire signals 
The basic theory of operation of the hot-wire anemometer is well covered in the 
literature; the development which follows leads to results given by Champagne & 
Schleicher (1967) and Hinze (1975). 

To specify the turbulent flow in our rectangular channel, we adopt Cartesian 
co-ordinates: x in the mean flow direction, y normal to the walls and z in the trans- 
verse direction. The velocity components are IT + u, v and w, where the bar denotes 
time averaging, and u, v and w are the velocity fluctuations in x, y and z directions, 
respectively. The equations used to determineq, 3 and G a r e :  

- 
(2.1) 

- e2 u2 = 2 
C2’ 

- -  - 
212 = et + ef - (1  + k2)  

c2( 1 - 3k2) ’ 

Analogously, from wires lying in the x, z plane 

on the assumption of statistical symmetry about the x, y plane, where c is the sensi- 
tivity of the linearized equation and k is the yaw sensitivity factor (Webster 1962; 
Champagne, Sleicher 8z Wehrmann 1967; Lawn 1969; Kanevce & Oka 1973). 

The values of 2,4 and 3 are obtained with a normal probe in the y ,  z plane for 2 
and an x-probe in the x, y plane for 3 and 2. To obtain 3 the X-probe is located in 
the x, z plane. Most of the measurements were repeated several times with different 
pairs of hot wires to eliminate the systematic error incurred with any one pair. 

Acrivlellis (1977) has suggested an alternative way of analysing slant-wire signals. 
We carried out the calculations using both methods, finding that Acrivlellis’s results 
gave very much lower values for 3 and 3. In  view of the pronounced three-dimen- 
sional character of turbulent mixing, these predictions seemed less realistic, and the 
results presented are those of the more widely used method of analysis (equations 
(2.1 )-( 2 .a)). 

3. Similarity analysis 
In  seeking to present our measurements in a compact manner, we shall adopt the 

least controversial analytical framework. Accordingly, we rely in the main on simple 
dimensional arguments. Perry & Abell (1977) have gone rather further with the 
predication of the variation of turbulence intensities in fully developed channel flow, 
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basing their analysis on Townsend's (1961) consideration of mean velocity varia- 
tion. 

The time-mean velocity at a point in fully developed flow of the kind under dis- 
cussion can be written 

as was shown in El Telbany & Reynolds (1980).  Similarly the r.m.8. turbulence 
fluctuations can be represented: 

where y is the distance measured from one wall; u* = (7,/p)* is the friction velocity 
based on the shear stress 7, at the wall from which y is measured; p is the density of 
the fluid; v is the kinematic viscosity of the fluid; h is half the distance between 
the parallel walls; and a is gradient of the kinematic shear stress. Note that 
1.1 = 1 ( ~ ~ - ~ , ) / 2 p h \  = la(~/p) / l3yI ,  where 71 and 7, are the stresses at the two walls, 
with the subscript 1 denoting the wall a t  which the stress is the greater and the sub- 
script 2 the other wall. 

Below we develop some specific forms from the general relationship (3 .2) ,  and these 
suggest ways in which the measurements can be presented coherently. Three velocity 
scales will be considered: 

(a) friction velocity based on the shear stress at  the adjacent wall, u* = (7,/p)*, 
(b) friction velocity based on the local shear stress, u, = (7/p)*, and 
( c )  an effective friction velocity? combining the effects of the two walls 

u, = (ua*l+~2*2)* = ~~,I)/PI*. (3.3) 

Evidently the first may be expected to be appropriate immediately adjacent to a 
wall, the second perhaps over a more extensive wall layer, and the third possibly in 
the central core of the flow. 

A number of length scales can also be distinguished: (a)  the viscous scale v /u* ,  a 
measure of the distance from the wall a t  which the effects of viscosity cease to be 
significant; (b) the gradient scale u%/lal, a measure of the distance from the wall a t  
which the effects of the stress gradient begin to be significant; ( c )  the channel half- 
width h; and (&) the distance ym from the wall to the point of maximum velocity. 
The applicability of these scales may be expected to parallel that of the three friction 
velocities. Note, however, that scale (d ) is defined only for Poiseuille-type flows 
(y = 72/71 < 0), while (b) is not defined for pure Couette flow (y = 1, a = 0). 

In  characterizing the various flows and wall layers, we shall use several 
dimensionless parameters. 

(a) y = 72/71 is the wall-stress ratio referred to above. 
( b )  h = lalh/ui = h / ( u i / l a l )  is a measure of the significance of the stress gradient 

relative to the stress a t  one wall. (We can also distinguish A, = a1h/u2,, and 
A, = a&/u$,.) Alternatively, A can be interpreted as the ratio of the length scales 
( c )  and (b) introduced above. 

(c )  p = ug*/(lalv) = (u~/lal)/(v/u*) is a ratio of the length scales (b) and (a)  
introduced above. (We can also distinguish p1 = u",/(a,v) and pa = u",/(a,v).) 

t This particular combination has been selected aa representing the total turbulence energy 
of the flow, the sum of two quantities which characterize the energy introduced at the two walls. 



288 M .  M .  M .  El Telbany and A .  J .  Reynolds 

This parameter is an indicator of the possible interaction between the effects of stress 
gradient and viscosity; the two can be influential in the same part of the flow only if 
ui//IaI is small enough and v/u* large enough, together giving a sufficiently small 
value of p. 

3.1. Wall-stress scaling 
If the influence of the stress gradient does not penetrate too close to a smooth wall, 
there will exist near it a region where 

q u *  = f (YU*/V)  = f(Y+) only, (3.4) 

with similar expressions for the other components. 

the wall indicate that 
Simple momentum and continuity arguments applicable immediately adjacent to 

u'/u* = A, yu*/v or u'/u* y+ = A,, 

d/u* = A,(yu , /~)~  or d/u* y+, = A (3.5) I w'/u* = A3yu,/v or w'/u,y+ = A 3, 

where A,, A,  and A, are constants. 
Moreover, in the viscosity-independent region farther from the wall, but not so 

distant that the other wall influences the flow (through the parameters h and a), 
equations (3.2) reduce to 

u'/u* = B,, d/U* = B,, w'/U* = B3 (3.6) 

with B,, B, and B, constants. We shall refer to the part of the flow where these results 
may apply as the 'plateau' region. 

From the experimental results to be presented later it will be possible to estimate 
these constants, and to discover the limits to the applicability of these simple 
formulae. Moreover, we shall find that there exist regions for which it may be useful 
to generalize equations (3.6) to 

and to 

3.2. Local-stress scaling 
Corresponding to each of the results developed above, we can write down an expression 
involving the local stress in place of the wall stress, and it is plausible to suppose that 
these results (which are indistinguishable from those above when Ialy/ui = hy/h 4 1 )  
will cause the data to coalesce over a wider region of the flow. 

Leaving the length scale v/u* unaltered, we have: 

u'/uLY+ = A,, d/uLy+2 = A 6, w'/uLY+ = (3.9) 
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FICWRE 3. Distributions of kinemetic shear stress at measuring station. For the symbols, see 
table 1. (a) y measured from the high-stress wall. (a) y measured from the low-stress wall. 
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FIGURE 4. Turbulence intensities for Couette-type flows nomelized with effective friction 
velocity (y meesured from high-stress wall). For the spbols ,  see table 1. (a) Longitudinal 
velocity fluctuation. (b)  Normal velocity fluctuation. (c) Lateral velocity fluctuation. 

(3.10) 

for the viscosity-independent region. These results may defme a more extensive 
' plateau ' region. 

We shall also consider the forms 
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I 
I I I I I I I e l  

0.5 1 -0 1.5 2.0 

vlh 
FIGURE 4 (c). For legend see p. 291. 

I I I I I I I 
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0.5 1 .o 1.5 

0 

vlh 
FIQURE 6. Turbulence intensities for Poiseuille-type flows normalized with effective friction 
velocity (y measured from high-stress wall). For the symbols, me table 1. (a) Longitudinal 
velocity fluctuation. (b) Normal velocity fluctuation. (c) Lateral velocity fluctuation. 

3.3. Effective-stress scaling 
The most obvious presentation using this scale is 

a ' / u e i  V ' l U e i  w ' / u e  = f ( y / h ) *  (3.13) 

It is possible, however, that one of the many alternative formulations may be more 
successful in collapsing the data in the core region between the wall layers. 
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4. Analysis of results 
4.1. Basic results 

Table 1 details the tests carried out. In this table ub  is the velocity of the moving 
belt, U, is the average velocity, U, is the maximum velocity, Re, = 2hU,/v and 
Reb = 2hU,/v are Reynolds numbers. The first group (cases 1-9) are Couette-type 
flows (y  > 0); the second group (cases 10-16) are Poiseuille-type flows (y  < 0). For the 
remaining flows (cases 16-26) the same measurements were made, but they reproduce 
the features illustrated by the other cases and will not be described so completely. 
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FIQTJRE 6. Variations of component intensities adjacent to high-stress walls normalized with 
wall-friction velocity. For the symbols, see table 1. (a) Longitudinal velocity fluctuation. 
b )  Normal velocity fluctuation. (c) Lateral velocity fluctuation. 

All but four of these flows were generated by running the belt in the direction of the 
blown flow of air. For the cases of counter-motion (12-14, 22) the region of reversed 
flow moving into the belt was very thin, extending at most to yl2h = 0.05. Hence a 
close approximation to full development can still be achieved a t  x,,, = 1980 mm, 
despite the small amount of air drawn into the channel from the nominal exhaust 
section a t  x = 2440 mm. 

Figure 3 shows the variations of turbulent shear stress in the fifteen flows selected 
for study. Wall stresses were found by extrapolating the linear portions to the walls. 
The probe can be brought close to the fixed wall, but not as near to the moving wall, 
since any local protuberance on the belt may damage the instrument. Hence one of 
the two wall layers within each flow can be examined in more detail than can the 
other. The linearity of the turbulent shear stress is seen to break down near the low- 
stress wall for cases 6, 7, 8, 9 and 10 because the viscosity-influenced region occupies 
a significant fraction of the channel when the parameter p < 50 and Iyl < 0.04. 

The turbulence intensities for the Couette-type flows plotted in figure 4 have been 
scaled using the ‘effective’ friction velocity of equation (3.3), which is conceived to 
represent the turbulent activity in the core region, contributed to by the wall layers 
on either side. Figure 5 gives the intensities for the Poiseuille-type flows, also scaled 
using the effective friction velocity. The scaling adopted does not bring about a 
coalescence of the velocity-fluctuation measurements, save in a crude way in an 
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FIGURE 7 (c) .  For legend see p. 296. 

ill-defined central region. Alternative presentations of these results are introduced 
below. 

4.2. Wall-stress scaling 

Figure 6 shows the variations of the component intensities adjacent to the high-stress 
walls, plotted according to the wall-stress scaling of equations (3.5), (3.6). The axial 
intensity uf is the largest over the entire region; its peak value (u’/u* 2: 2.8) is attained 
near the wall, at y+ N 18. Since the viscous layers are here very thin, the X-probe 
measurements of 20 and wf do not extend into the region of rapid variation near the 
wall; nevertheless, the ‘ plateau ’ values of equations (3.6) are clearly defined. 

Figures 7 and 8 give the turbulence intensity distributions adjacent to low-stress 
walls. For cases with y < 200 (see table 1) the intensities are significantly greater than 
those for p > 200 in the region y+ > 40. However, for cases with p < 10 the intensities 
exceed those for y > 10 in the region y+ < 15, and even closer to the wall for the lowest 
values of p. 

Table 2 gives the constants of equations (34, (3.6) derived from figure 7; note 
that the same values are indicated by figure 6. It will be noted that the ‘plateau’ 
given by wall-stress scaling extends over the range 40 < y+ < 100 unless the stress 
gradient is large (y < 200). Comparisons of these values with those derived from other 
measurements are given in table 3; there is fair agreement between our results and 
those of other investigators. It should be noted, however, that the values charac- 
terizing vf  and w‘ in the viscous region are usually - as are ours - estimates based on 
modest experimental evidence. 
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FIQURE 8. Variations of component intensities adjecent to low-stress walls normalized with 
wall-friction velocity. For the symbols, see table 1. (a) Longitudinal velocity fluctuation. 
(b)  Normal velocity fluctuation. (c) Lateral velocity fluctuation. 

4.3. Local-stress smling 
In  figure 9 the variations of component intensities near the low-stress wall in Couette- 
type flows are presented in terms of the parameters of equations (3.9), (3.10); table 4 
gives constants and limits derived from this figure. Again a clear ‘plateau’ emerges, 
but now with a quite different range of applicability: 

(1)  y+ > 50 for layers with 0-1 < ,u < 10, that is, where the influence of the stress 
gradient is relatively large; 

(2) y+ > 165 for layers with ,u > 200, that is, where the stress variation is less 
significant. 

We shall see later that the outer boundary of these plateau regions is given approxi- 
mately by y/h = 1-35’ that is, by the commencement of the wall layer on the opposite, 
high-stress wall of the channel. 

Figure 10 shows the intensity distributions for the high-stress walls in Couette- 
type flows, using the scaling of equations (3.11). Case 1, for which a = 0, cannot be 
included, but results for the low-stress wall of case 2 are given. In  figure i 1 the varia- 
tions of component intensities for the high-stress walls in Poiseuille-type flows are 
presented in terms of the parameters of equations (3.11). As in figure 9, local-stress 
scaling is found to generate a ‘plateau’ in the core of the flow, but not (for these 
high-stress layers) near the wall. Individual intensity variations near the wall are 
approximately linear, but the length scale Ial/ui does not prove to be very effective 
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FIGURE 8(6,  c). For legend see p. 297. 
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Flows Y+ Region P u'Iu* 
Case8 7-10 <16 V ~ O U S  < 10 A,Y+ 

All others <16 VieCous > 10 A,Y+ 

A ,  = 0.28 
to 2.0 

A ,  = 0.28 
All >40 Plateau >200 B,  = 2.4 

Poiseuille - Core, high- All 2.12 
< 100 

tme stress side - 1 * l l Y l Y m ,  

vIIu* 
A,Y+' 

A ,  = 0.006 
to 0.126 

Aay+' 
A ,  = 0.006 
B, = 0.96 

w'Iu* 
A,Y+ 

A,Y+ 

A ,  = 0.08 
t o  1.06 

A, = 0.08 

B,  = 1.36 

TABLE 2. Similarity results for wall-stress scaling. The higher vduw in the mgea for 
A,, A,, A, repreeent w e  9, the lower vduea m e  6. 

in bringing together the data for the several flows. Note also that Poiseuille flow itself 
is unrepresentative of the broader class of flows for which 0 > y > - 1. 

Figure 12 shows the intensity distributions for Couette-type flows plotted according 
to the local-stress scaling of equations (3.12), where his the length scale. This presenta- 
tion is no more effective in collapsing the several sets of near-wall data than was the 
gradient length scale used in figure 10. Seemingly, the effects of the core flow (repre- 
sented by h) and of the stress gradient (represented by lal/u$) are of comparable 
importance in this region, and neither scale alone can define adequate similarity laws 
for the turbulence. 

Approximate formulae patterned on equations (3.1 l), (3.12) can be developed for 
this region, for example, 

(4.1) 

u'/uL = 2.3 - 0*82y/h = 2.6 - 34y(al/u$, 

dIuL = 1.0-0.3ly/h = 0.98-0-75ylal/u$, 

w'/uL = 1.4 - 0.55y/h = 1.45 - 1.68ylal/u$, 

valid for a range of Couette flows with ,u > 200. However, these results are neither 
accurate enough nor of sufficiently general application to be worth listing in full. 

Referring back to figure 6, we note that wall-stress scaling proved successful in 
collapsing much of the data for high-stress walls, for which local-stress scaling has 
now been seen to be ineffective. Summing up, the following simple 'plateau' models 
for the intensities have been established: 

(a) with wall-stress scaling, in the region 40 < y+ c 100 for any layer with ,u > 200; 
(b) with local-stress scaling, in the region y/h < 1-35 for Couette-type flows, with 

the inner boundary given by y+ = 165 for ,u2 > 200, by y+ > 50 for 10 > p2 > 0.1, 
and by y+ = 20 for ,u2 < 0.1. (Here y is measured from the low-stress wall.) 

I 

4.4. Core region: Couette-type f iws  

The structure of the turbulence in the core region of Poiseuille-type flows must be 
expected to be significantly different from that in Couette-type flows, since conditions 
at the boundaries of the core are so dissimilar. 

For Couette-type flows our study of the 'plateau ' region extending outwards from 
the low-stress wall has led to a simple characterization of the turbulence in the central 
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-31 3“ 

2.0 
X Av - 
b 
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100 200 300 400 

Y U &  

Y u .Jv 
FIGURE 9. Variations of component intensities near the low-stress wall for Couette-type flows 
normalized by local-friction velocity. For the symbols, see table 1. (a) Longitudinal velocity 
fluctuation. ( b )  Normal velocity fluctuation. (0)  Lateral velocity fluctuation. 

core. By adopting the local scale u, in figure 12, we have established nearly uniform 
values of the scaled intensities over the range 0.65 < y/h < 1.35. The empirical values 
describing this region are in fact the constants B, to Be of equations (3.10), since the 
‘plateau’ extends into the core and, indeed, to the outer edge of the other wall layer. 
It is somewhat surprising that high-stress and low-stress layers merge after the rather 
different behaviour near the wall (see figure 9). 
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FIUIJRE 9 (0). For legend see p. 301. 

0 

Flows y+ y / h  Region p. U'/UL d / U L  W'IUL 

Couette- c 1 5  - Viscous <10 A,Y+ A,Y+B A,Y+ 
type A ,  = 0.11 A, = 0.0018 A ,  = 0.04 

to 0.2 to 0.012 to 0.1 

Couette- >20 ~ 1 . 3 5  Plateau, <0.1 B ,  = 1.75 B ,  = 0.8 B, = 1.05 
type core 

Couette- >50 <1.35 Plateau, >0.1 B ,  = 1.75 B,  = 0.8 B, = 1.05 
type core < 10 

type core to 0.88 to 1.2 
Couette- >165 <1.35 Pl8teaU, >200 B ,  = 1.75 B ,  = 0.78 B, = 1.0 

TABLE 4. Similarity results for local-stress scaling (low-stress side). The higher values in the 
ranges for A,, A,, A ,  represent case 9, the lower values represent case 6. The higher values in 
the ranges for B,, B, represent case 1 (y  = 1). 

4.5. Core region: Poiseuille-type JEows 
Scaling with the local stress, which proved effective for the core of Couette-type 
flows, is inappropriate here, since the shear stress falls to zero somewhere in the core. 

Figure 13 presents the turbulence intensities on the high-stress sides of these flows 
using the velocity and length scales of equations (3.8). With this scaling most of the 
data gather near a single line; the resulting empirical constants and limits are given 
in table 2. 

If a like procedure is applied to the low-stress sides of these flows, different formulae 
are obtained and the scatter is much greater than that of figure 13. Figure 14 gives the 
turbulence-intensity variations scaled using the effective friction velocity, as 
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y la l/U2 

FIGURE 10. Intensity distributions for the high-stress walls of Couette-type flows normalized 
by local-friction velocity. The symbols x and 0 represent the low-stress and high-stress walls 
for case 2 respectively; for the other symbols, see table 1. (a) Longitudinal velocity fluctuation. 
(b) Normal velooity fluctuation. (0 )  Laterel velocity fluctuation. 

t x -  
A 

A X 

A 
X 

A A A 

1.51 I I I I I I I 
0 0.2 0.4 0-6 

Y w u : ,  
FIGURE 11. Intensity distributions for the high-stress walls of Poiseuille-type flows normalized 
by local-friction velocity. For the symbols, see table I. (a) Longitudinal velocity fluctuation. 
@) Normal velocity fluctuation. (c) Lateral velocity fluctuation. 
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functions of distance measured from the point of maximum velocity. Very approxi- 
mately, the data are represented by 

u ' / U ,  = 1.05, d / U ,  = 0.55, W' /Ue  = 0.62. (4.2) 

4.6. An overview 

Figure 16 shows the boundaries between the regions in which the several similarity 
laws have proved to be applicable. We have been able t o  define reasonably accurate 
representations of the intensities in the following parts of the flows: (a )  in the 'linear' 
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FIQWRE 13. Intensity distributions for the high-stress walls of Poiseuille-type flows scaled using 
wall-friction velocity and length scale for that part of the flow. For the symbols, see teble 1.  
(a) Longitudinal velocity fluctuation. ( b )  Normal velocity fluctuation. (c) Lateral velocity fluc- 
tuation. 
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region within L ;  (b) in the ‘plateau’ region between V and P*; (c) in the core region 
of Couette-type flows between PI and Pz; ( d )  on the high-stress side of Poiseuille-type 
flows between P,* and M. 

The regions for which we are not able to provide such convenient representations 
of the turbulence are: (e) the ‘viscous buffer’ region between L and V ;  (f) the ‘inviscid 
buffer’ region in Couette-type flows between P* and P (where we have only approxi- 
mate results such as equations (4.1); (9)  the low-stress side of Poiseuille-type flows 
between Pg and M (where we have only the rough guide of equations (4.2)). 

<b 
L 
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Comparison of figure 15 with the corresponding presentation of El Telbany & 
Reynolds (1980) - figure 12 of that paper, showing regions of applicability for various 
similarity laws describing the mean velocity - suggests that: 

(1) the layer in which viscosity has a significant direct influence is of much the 
same depth whether defined in terms of mean velocity or in terms of turbulence 
intensities; 

(2) the wall layers defined by a consideration of mean velocities and turbulence 
intensities are also of roughly the same thickness. However, the simple logarithmic 
profile for the mean velocity applies over a much more extensive region than does 
the corresponding intensity plateau derived from wall-stress scaling. 

5. Further analysis of the results 
5.1. Other measures of turbulence structure 

To this point we have considered variations in the intensities themselves. We look 
now at a number of quantities obtained by combining these primitive measures of 
turbulence structure. 

Elsewhere (El Telbany t Reynolds 1981b) we have presented these measurements 
in terms of the quantities (eddy viscosity, mixing length and friction coefficient) 
commonly used in engineering analysis. The particular case of Couette flow is given 
more detailed consideration in El Telbany t Reynolds (1981a). 

The turbulence kinetic energy +qz = +(u‘2+ v’a+ w ’ ~ )  per unit mass is displayed in 
figure 16, having been scaled by the effective friction velocity. A noteworthy feature 
of the results for Couette-type flows is the close grouping of the values for cases in 
which one wall stress is very small (y  < 0.04, cases 6-9). The corresponding Poiseuille- 
type flows (case 10 with y = - 0-003 and case 11 with y = - 0.075) display a very 
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FIGURE 15. Boundaries between regions: L,, L,, limits of ‘linear’ region (as figures 6-8, com- 
ponent normal to wall is in fact quadratic here); 4, V,, outer limits of ‘viscous buffer’ region 
(y+ = 40); P:, p t ,  outer limits of ‘plateau region’ based on wall-stress scaling (y+ = 100 in 
most cases); P,,  inner limit (for low-stress wall) of ‘plateau’ region based on lOC8l-StrWS scaling 
for Couette-type flows (as figure 9); P,, outer limit (for low-stress wall) of ‘plateau’ region based 
on local-stress scaling for Couette-type flows (y/h = 1.36, figure 12). The lines M and 2 denote 
respectively points of maximum velocity and zero shear stress for Poiseuille-type flows. The 
co-ordinate y is measured from the low-stress wall. (a) Whole of the channel. (b) Expansion of 
region near low-stress wall. 

similar trend, but the energy is (according to our measurements) distinctly higher 
through most of the channel. 

The ratio of the turbulent element of the kinematic shear stress to the kinetic - energy 
is plotted in figure 17. For the Poiseuille-type flows of figure 17 (b), the ratio - uvU/&q2 
is reasonably constant near the high-stress wall, then decreases rapidly and reaches 
zero at the position of zero stress. This pattern is familiar in channel and pipe flows 
(Laufer 1951, 1954; Comte-Bellot 1965; Hanjalid 1970), and in boundary layers 
(Klebanoff 1955). In contrast, for the Couette-type flows described by figure 16(a) 
the ratio -G/iq2 increases at points progressively further from the wall, then 
remains nearly constant in the core region, with a considerably higher value (around 
0.4) than those characterizing Poiseuille-type flows (0.22-0-32). Again there is a 
distinct difference between the y 21 0 cases for Couette-type and Poiseuille-type 
flows. 

A direct proportionality between the shear stress and the kinetic energy is generally 
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3.0 

ylh  
FIGURE 16. Distributions of turbulence kinetic energy scaled Using effective friction velocity 
(y measured from high-stress wall). For the symbols, see table 1. (a) Couette-type flows; 
( b )  Poiseuille-type flows. 
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FIUURE 16(b) .  For legend see p. 309. 

regarded as a criterion for structural equilibrium of a turbulent flow, characterized 
by a local balance of energy generation and dissipation (Bradshaw, Ferris & Atwell 
1967). Figure 17 indicates that this may be a somewhat superficial view, for it suggests 
that in Poiseuille-type flows the region of 'structural equilibrium ' near the high-stress 
wall is produced by a rough balance between (a) an increase in the length scale at 
progressively greater distances from the wall, and (b) a reduction of the potential 
ordered activity by the influence of the core, whose nature is in turn determined by 
the activity near the far wall. 

The nearly constant ratios characteristic of the flows we have studied are 
compared with values found by other investigators in table 5 .  Evidently the constant- 
pressure boundary layer is most like the limiting Poiseuille-type flow for which 
y 2: 0. The high values in figure 17(a )  near y / h  = 1.5 may be a consequence of in- 
accuracies of measurement. In  these flows (cases 7-9) the viscous layer near the 
low-stress wall is rather deep, and accurate measurement of the small component 
becomes difficult. In connection with the observed differences between cases y + 0 + 
and y-f 0 - , it is relevant to note that the turbulent element of the shear stress is not 
eroded so rapidly in the Poiseuille-type limit (compare figure 3 (a) and (b)). 

Figure 18 (a)  gives the correlation coefficientZLZ)/urvr for Couette-type flows, while 
figure 18(b )  shows this coefficient for Poiseuille-type flows and makes a comparison 
with Comte-Bellot's (1965) data for pure pressure flow. For the latter case it has often 
been found that the correlation coefficient is virtually constant and equal to about 
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ulh 
FIGURE 17. Distributions of ratio of turbulent shear stress to kinetic energy (y measured from 
high-stress wall). For the symbols, see table 1. (a;) Couette-type flows; (b )  Pokuille-type flows. 

0.38 over a considerable region near the wall. In  figure 18(b)  this is found to be so 
once again, and the values are throughout in good agreement with Comte-Bellot's. 
For the other Poiseuille-type flows, the nearly constant value of the correlation 
coefficient is rather higher, about 0.45, over a more extensive region extending away 
from the high-stress wall. (This is closely consistent with the value obtained by 
Hanjali6 (1970), namely -G/u 'd  = 0.42 for y = -0.25.) As the stress ratio y 
decreases, this region extends across the greater part of the channel. Figure 18(a) 
shows that in the present experiments on Couette-type flows the correlation coefficient 
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Author 

Laufer ( 1954) 
Klebmoff (1955) 
Comte-Bellot (1965) 
Hmjelid (1970) 
Present 
Present 
Present 

Flow type 

Smooth-walled pipe flow 
Constant -pressure boundary layer 
Smooth-walled channel (y = - 1) 
Rough-walled channel (y = - 0.25) 
Smooth-walled channel (y = - 1) 
Smooth-walled channel (y = - 0.485 to - 0.0028) 
Smooth-walled channel (y > 0) 

TABLE 5. Comparison of the nearly uniform value of uv/#q2, 

- - u v / k '  

0.28 
0.32 
0.23 
0.26 
0.23 

0.28 to 0.32 
0.38 to 0.42 

I:: 1:. 
I 3  

y lh  
FICXJRE 18. Variations of shear correlation coefficient (y measured from high-stress well). For 
the symbols, see table 1. (a) Couette-type flows; (b) Poiseuille-type flows; - - -, Comte-Bellot 
(1965), Re = 57000. 

rises from a value around 0-4 near the high-stress wall, to  a value around 0.7 pertaining 
throughout the core region. Again cases 7-9 display high values near y / A -  1.5, 
probably attributable to  the difficulties of measuring the component uvin the viscous 
region near the low-stress wall. Comparison of figure 18(a) and ( b )  again indicates 
that there is a clear difference in the structure of the turbulence (save very near the 
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high-stress wall) for cases 9 and 10, the limiting Couette-type and Poiseuille-type 
flows. 

Figure 19 gives the orientation of the principal stress axes. One of the principal 
directions as is shown, calculated from the expression 
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Y U d V  

FIQURE 20. Distributions of parsmeter defining the production of turbulence energy. For the 
symbols, see table 1. (a) y meeaured from the high stress wall. (b)  y memured from the low- 
stress well. 

The variations in this angle are much alike for the whole family of Couette-type flows, 
and the Poiseuille-type flows also adopt this pattern through about one-half of the 
channel. In this respect at least the limiting cases for which y 2: 0 behave in a very 
similar manner. 

6.2. Production of turbulence 
Figure 20 displays variations of the production of turbulence energy, - uvdU/dy ; 
the two parts of the figure relate, respectively, to  high-stress and low-stress walls. 

- 
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p Mean velocity 
Turbulence 

Turbulence intensities production 

Standard plateau and P z 1/K for 1000 Standard constant-stress 
logarithmic and viscous regions viscous regions 

Logarithmic law for y+ c 200 intact 

20 c y+ < 100 

200 Viscous region unchanged. Plateau and viscous regions 

50 Viscous layer occupies a No change in viscous region 
significant fraction of the wall 
layer; still linear near wall. 
Logarithmic layer reduced 
toy+  2: 150 

207’ of the ohamel; still 
linear near wall. Logarithmic layer 
region nearly vanished 

y+ < 15. Plateau almost 
completely eroded 

10 Viscous layer occupies nearly Intensities above constant- 
stress values even in viscous 

No region of 
’ P = constant 

J 0.3 Viscous layer departs from Intensities generally much 
constant-stress pattern higher than constant-stress 

model 

TABLE 6. Stages in the breakdown of the constant-stress wall layer. 

The distance from the wall and the wall friction velocity u* have been chosen as 
length and velocity scales. 

Figure 20(a) shows that for high-stress walls the dimensionless production para- 
meter 

for y+ c 100, where K is von K&rmin’s constant. Indeed, P lies in the range 2-6-2-1 
within the more extensive region y+ c 300; this region may then be thought of as 
the ‘standard’ constant-stress wall layer. 

In figure 20(b) we see that the constant-stress layer does not extend even to 
y+ = 100 on the low-stress sides of the flows labelled in table 1 as cases 2 and 13, for 
which p = 500 and 1000 and Iyl = 0.3-0.5. Moreover, for cases 3 and 12 (p 2: 300 
and 17 I N- 0.2) there is no region in which the values of P characteristic of the constant- 
stress layer is established. 

We conclude then that the distribution of turbulence production near a wall is 
profoundly influenced by the stress gradient within the wall layer. 

5.3.  Erosion of the constant-strese layer 

Both in the mean-velocity measurements of El Telbany & Reynolds (1980) and in the 
turbulence measurements presented here, there is evidence of a progressive departure 
of the wall layer from the constant-stress pattern, as the role of the stress gradient 
becomes more important. The ‘standard ’ constant-ptress layer which exists when the 
parameter p = ui/(Ialv) > 1500 has the following features: 
(1) logarithmic variation of mean velocity for y+ c 300; 
(2) nearly constant value of the production parameter P for y+ < 300; 
(3) a plateau in turbulence intensities (see table 2) for 40 c y+ c 100; 
I1 FLM I11 
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(4) a linear variation in mean velocity for y+ < 7; and 
(5) simple variations in the intensities for yf < 15. 
The progressive erasure of this pattern as the parameter p decreases is indicated 

in table 6. We note that the turbulence structure responds to the encroachment of 
the stress gradient sooner than does the mean velocity distribution, and that the 
pattern of turbulence production begins to change before the intensities. This observa- 
tion brings into question the kind of argument which develops the logarithmic velocity 
profile by considering a local balance between turbulence production and dissipation. 

The picture of the breakdown of the constant-stress layer developed here will 
relate, in a general way, to the phenomenon of ‘ relaminarization ’ in a boundary layer 
developing in an adverse pressure gradient. 

It will be recognized that these attempts to define the changes in the wall layer are 
based on information about a rather small number of flows; a definitive description 
would require the study of further layers with very small wall stress. There are 
indications that the structure of the flow is significantly different for y < 0 from that 
for y > 0, but here too the evidence now available is hardly sufficient to justify a more 
conclusive statement. 

6. Conclusions 
Many features of the distributions of turbulence intensities in these flows can be 

explained, or a t  least presented compactly, using similarity arguments. In  particular, 
‘plateau ’ regions can be distinguished, using both wall-stress and local-stress scaling, 
where the intensities are sensibly constant. However, outside the plateau defined by 
wall-stress scaling there is a region for which it has not been possible to determine an 
appropriate length scale. That is to say, in this region the influence of the two walls 
makes itself felt in a complex way and not through the stress gradient alone. 

It has been possible to develop simple similarity laws for the high-stress side of 
Poiseuille-type flows, but no very satisfactory description has been evolved for the 
low-stress side (save very near the wall, where simple wall-stress scaling is appro- 
priate). Even for those parts of the flows for which we have been relatively unsuccessful 
in correlating the several sets of measurements it is possible to set down approximate 
formulae which should be sufficiently realistic for many purposes. 

We have been able to sketch out the progressive destruction of the standard 
constant-stress layer as the role of the stress gradient grows in importance. Standard 
features of the turbulence vanish before the mean-velocity distribution departs from 
the constant-stress, logarithmic pattern. Somewhat surprisingly, the turbulence 
production is the aspect of the flow which is most sensitive to the stress gradient. 

There is evidence that the nature of a flow where one wall stress is much smaller 
than the other is significantly dependent on the sign of the smaller stress through 
much of the channel, even when that stress is very small indeed. At  several points in 
the preceding discussion we have drawn attention to an apparent discontinuity in the 
results obtained when the stress at one wall is very small: the measured values were 
seen to depend critically upon the sign of the nearly vanishing stress at the low-stress 
wall. In figures 16 and 17 the shift between the turbulence energy distributions for 
cases 9 and 10 is modest, say 20%, at most. This reflects the measurements of the 
intensity u’ (see figures 4~ and 5a) ,  which makes the dominant contribution to the 
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turbulence energy. It is in figure 18, which shows the correlation coefficient, that the 
difference between cases 9 and 10 is most marked, sometimes amounting to 40%. 
This is so because the normal component v' plays a more significant role; referring to 
figures 4 ( b )  and 5 ( b )  we see that the measurements of this quantity are significantly 
different for cases 9 and 10. Finally, in figure 19 the results for the cases in which 
y 1: 0 are not too dissimilar, again because the normal component v' does not strongly 
affect the principal-stress direction. 

Summarizing, the measured values of the streamwise and lateral intensities, u' 
and w', are not significantly different for the two limiting cases of y+O+ and 
y + 0 - . However, the values of the third component v' do differ, and in consequence 
so do quantities which depend strongly on w'. We conclude that the sign of the vorticity 
generated at the low-stress wall has a critical influence on the structure of the turbu- 
lence through a large part of the channel, even when the smaller stress is a very small 
fraction of the dominant stress a t  the other wall. In the measurements we have made 
the change in structure has its most obvious effect on the normal component of the 
turbulent velocity fluctuation. 

The apparatus used in these experiments was in large measure designed and 
developed by Dr M. Farrashkhalvet and Mr M. Kalirai, formerly students of Brunel 
University. The first author, who is seconded from the Faculty of Engineering, 
Helwan University, Elmataria, Cairo, has also to acknowledge with thanks the 
financial assistance of the Egyptian Education Bureau during this investigation. 
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